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PREFACE

This report is published to provide coastal engineers with a formulation
and a set of nomographs for determining the breaking wave characteristics,
such as breaking wave height, depth of breaking, and angle of breaking wave
with a straight shoreline, as functions of the deepwater wave characteristics:
wave height, wave period, and wave angle. This formulatior is necessary to
determine the littoral drift transport; however, to obtain such results, a
review of nonlinear wave transformation is presented. A "hybrid" wave ap-
proach based on linear (or Stokes third order) and cnoidal waves is proposed
as the best theory from available experimental data. The work was carried
out under the coastal structures program of the Coastal Engineering Research
Center (CERC).
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CONVERSION FACTORS, U.S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

U.S. customary units of measurement used in this report can be converted to
metric (SI) units as follows:
}
Multiply by To obtain
inches 25.4 millimeters
2.54 centimeters
3 square inches 6.452 square centimeters
. cubic inches 16.39 cubic centimeters ¥
A . feet 30.48 centimeters ,
f 0.3048 meters ‘
g< square feet 0.0929 square meters
3 3 cubic feet 0.0283 cubic meters !
= yards 0.9144 meters
: ; square yards 0.836 square meters Y
iﬂj cubic yards 0.7646 cubic meters f
= miles 1.6093 kilometers |
§ ! square miles 259.0 hectares (
-y !
K knots 1.852 kilometers per hour |
S !
;. | acres 0.4047 hectares ;
~ % foot-pounds 1.3558 newton meters (
millibars 1.0197 x 1073 kilograms per square centimeter %
? ounces 28.35 grams '
u pounds 453.6 grams
"; 0.4536 kilograms
: !
i ton, long 1.0160 metric tons .
| ton, short 0.9072 metric tons
degrees (angle) 0.01/45 radians ’
b | Fahrenheit degrees 5/9 Celsius degrees or Kelvins!

b 1To obtain Celsius (C) temperature recadings from Fahrenheit (F) readingu, use
: formula: C = (5/9) (F -32).

To obtain Kelvin (K) readings, use formula: K = (5/9) (F -32) + 273.15.
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SYMBOLS AND DEFINITIONS

elliptic function

elliptic function

wave phase speed

complete elliptic integral of the second kind
wave height

unrefracted deepwater wave height
complete elliptic integral of the first kind
refraction coefficient

shoaling coefficient

wavelength

cnoidal wavelength parameter
linear wavelength

littoral transport rate

beach slope

wave period

Ursell parameter = HLZ/d3
particle velocity

stillwater depth

cnoidal shoaling function

gravity

wave number

pressure

time

cartesian ordinates

angle of wave ircidence
free-surface elevation

density

velocity potential

subscripts which refer to breaking or deepwater values, respectively
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TRANSFORMATION OF MONOCHROMATIC WAVES FROM DEEP
TO SHALLOW WATER

by
Bernard Le Mehaute and John D. Wang

I. INTRODUCTION

An understanding of many nearshore phenomena relies on the ability to
predict the local wave climatology, given a deepwater wave description,
For example, a quantitative description of longshore sediment transport is
based on a knowledge of the wave characteristics in the surf zone. This
report presents methods for determining the changes in the characteristics
of a wave traveling over a variable bottom from deep water to shallow
water.

The acute sensitivity of the rate of littoral transport to wave
breaking characteristics implies an accurate determination of these
characteristics. The problem has numerous facets:

(a) Given a deepwater unidirectional monochromatic wave, what
are the breaking wave angle, depth of breaking, breaking wave height,
and related quantities?

(b) Given 2 multidirectional deepwater incident wave spectrum,
what is the distribution of breaking wave characteristics and the
"equivalent" monochromatic wave used to determine the littoral drift?

(c) How should a synoptic wave climatology be treated in order
to determine the rate of littoral drift and related quantities?

Only the first problem is addressed in this report. The relevant
literature is reviewed, and a new hybrid wave theory is proposed to
determine wave breaking characteristics on a sloped plane beach.

II. NONLINEAR WAVE TRANSFORMATION

1. nonlinear Wave Shoaling.

It is generally assumed that the wave motior over a gentle slope
is the same as that on a horizontal bottom, and that there is no re-
flection nor wave profile deformation. The wave motion is then
determined so that the rate of transmission of energy or energy flux
is constant over varying depth.

The average energy flux through a vertical plane of unit width
perpendicular to the wave propagation is

t+T n
3 P, 1,2
Fav T j S-d (gz + S V7)) udzdt (1)

t
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density

t = time

T = wave period

d = water depth

n = free-surface clevation
g = gravity acceleration

P = pressure

V(u,v)

particle velocity
z = vertical ordinate

In the general case, linear or nonlinear, where the flow motion
can be expressed by a potential function ¢(x,z,t), the Bernoulli
equation yields

P12
by =g+t 5V (2)

{2

and u = ¢, SO that the energy flux becomes

0 t+T n
F o= - .- 5 S ¢, «_dxdt (3)
av T Jy d tx

in which case ¢ can be expressed at any order of approximation, such as

given by a Stokesian power series. Even though classical solutions for

cnoidal waves are irrotational, the potential function is not expressed

but rather the solution for (n,u,v) is given; therefore, Ehe energy flux
for cnoidal wave is determined from equation (1) where (V“ = ul + w ).

The results of all the calculations pertinent to linear wave
theory and linear wave shoaling are given in Le Mehaute (197¢),

Instead of expressing ¢ at a first order of approximation as in
the linear wave theory, ¢ is expressed at a higher order in equarion
(3), the shoaling coefficient Kg = H/H, becomes not only a function
of d/L or d/L, but also a function of the deepwater wave steepness,

Ho/Lg .

This calculation has been performed at a third order of approxi-
mation (Le Mehaute and Webb, 1964), and the fifth order of apprcximation
(Koh and Le Mehaute, 1966) based on the third-order solution and fifth-
order solution for a Stokesian wave as developed by Skjelbreia and
Hendrickson (1960). The first definition of Stokes for the phasc velocity
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is used; i.e., the average horizontal water particle velocity over a
wavelength is zero. The results of such investigation are presented
in Figures 1 and 2.

The correction AH due to nonlinear effects never exceeds 5
percent and is more commonly of the order of 1 percent. These in-
vestigations show that:

(a) The nonlincor shoaling coefficient is initially less than
the linear coefficient vhen d,/Ly 5 0.4, then becomes larger toward
shallow water until the wave breaks.

(b) The Stokesian power series is not uniformly convergent, i.e.,
the function of d/L of higher order tends toward infinity when c¢/L tends
to small values. Therefore, the '"best" order of approximation 1s not
necessarily the highest order. For relatively deep water d/L > 0.25, the
fifth order of approximation would be the best insofar as wave height
transformation is concerned; for very shallow water d/L < 0.01, the
linear theory would be best. In the intermediate range the third-order
theory would be best, and therefore should be preferred overall because
of its range of applicability.

The second definition of Stokes for the phase velocity can also be
used; the average momentum over a wavelength is zero by addition of a
uniform motion. Yamaguchi and Tsuchiya (1976) indicate that the results
yield slightly larger values, at most a 7-percent increase for the
shoaling coefficient, than the results obtained by Le Mehaute and Webb
(1964) .

The principle of conservation of energy flux has also been applied
to a cnoidal wave, and like the Stokesian wave the results depend on the
order of approximation and the definition of phase velocity. All these
investigations on cnoidal waves are based on aun energy flux such as ex-
pressed by equation (1). Masch (1964) was the I::st to deal with this
subject; however, his wave theory is not consistcit, eve: erroneous,

(in the table of functions used by Masch in the shoa!inz of cn¢idal
wave, the water depth below MWL should be substitutea by hy, the water
depth under trough), and the results are presented in a form which is
difficult to use., The relation to deepwater wave and sinusoidal theory
is not discussed and no attempt is made to follow the shoaling of a
specific wave.

A significant contribution to the shoaling of cnoidal waves is
given by Iwagaki (1968). Iwagaki treats the case of an approximate
solution of cnoidal wave in which he used the second definition of
phase velocity as given by Laitone (1961). The approximation is on the
value of the elliptic integral which is replaced by a simple function
of empirical coefficients. Iwagaki shows that this simplification
actually covers a wide range of cases and allows him to simply in-
vestigate the shoaling of what he calls "hyperbolic waves.™" When the
energy flux in deep water (as computed using small-amplitude theory)
is equated to the energy flux in shallow water, described by first-
order hyperbolic waves, Iwagaki obtains
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Figure 1. The shoaling coefficient at the third order
of approximation (Le Mehaute and Webb, 1964).
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According to Iwagaki (1968), this theory yields sufficiently accurate
results for Ursell parameter U > 47. However, as pointed out by
Svendsen (1974), the theory of Iwagaki deserves to be regarded as a
practical solution to second-order cnoidal waves when the deepwater
wave steepness is smaller than 0.02 and the relative water depth is
smaller than 0.05. The matching of the Iwagaki hyperbolic wave with

the third-order Stokesian wave is shown in Figure 3.

The shoaling of the true cnoidal wave has been investigated by
Svendsen and Brink-Kjaer (1972), Svendsen (1974), and Svendsen and
Hansen (1977). They also give H/H, as function of d/Ly and Hgp/Lg
(Fig. 4) and a computer-printed table. It can then be shown that for
large values of Ursell parameters the shoaling coefficient K¢ + d-1
instead of d-1/4 as given by the Green law (long wave linear theory).
Concurrently, Shuto (1974) arrives at very similar results,

Yamaguchi and Tsuchiya (1976) also carry out the same calculation
based on the two definitions of the Stokes wave velocity for the cnoidal
theory of Laitone (1961) and that of Chappelear (1962). However, an
arithmetic error has been found in the Laitone theory (Le Mehaute, 1968).

2. Comparison and Matching Between Various Theories.

As a wave propagates from deep water to shallow water it is
theoretically possible to determine the variation of wave height, wave-
lengths, etc. This could be done by applying the principle of con-
servation of energy flux to either the linear wave or the nonlinear
Stokesian wave, or the cnoidal and solitary wave. Since a Stokesian
wave rather applies in deep water, the transformation of water wave
should be followed with that theory for the largest value of relative
depth d/L, and then switched to the cnoidal theory when d/Lo becomes
small. However, such a scheme implies that the theories can be matched
continuously, but there is a priori no reason why che ratio H/H, should
be the same for the value d/L, which corresponds to the limit of validity
of both theories. On the other hand, if the wave heights are matched,
then the energy flux will present a discontinuity (Fig. 5). The signifi-
cant feature is that the cnoidal wave height grows faster with decreasing
depth, although at intermediate depth its value is up to 10 percent less
than predicted by a Stokesian theory. Waves with wave steepness larger
than 2 to 3 percent will break at a depth where the cnoidal wave height
is only slightly larger than that of a Stokesian wave. Waves with small
wave steepness, however, such as swells, reach much smaller depth before
they break and consequently a major part of their shoaling process is
governed by the cnoidal wave theory. For these waves, the two theories
such as the Stokesian (first order or linear theory) and cnoidal wave
at a second order will yield significantly different results.
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Figure 5. Matching Stokesian (first order) and cnoidal
wave theory (Svendsen and Hansen, 1977).

These results (Fig. 5) show that no continuous transition is pos-
sible between the two theories. This means that it is not possible to find !
a value of the water depth, d, where the curves for the two theories fit ]
smoothly together. If the Stokesian theory is used in deeper water and
changed to a cnoidal theory when the wave enters shallow water, there
will be a discontinuity in the variation of either wave height or wave-
length, or both, depending on which water depth is chosen for the switch,
Of course, the same will appear for all other quantities such as particle
velocities, pressure, etc., and the rate of change of these. Svendsen
(1974) shows that the limit of applicability of the cnoidal theory is
d/Ly < 0.1193 when H is small. Koh and Le Mehaute (1966) also showed
that the limit of applicability of the fifth-order Stokesian wave theory
is d/L, > 0.10 when H/L, = 0.05 and d/L, > 0.13 when H/Lp = 0.10 (see
Fig, 2).

There is a large difference between Stokesian and cnoidal wave
between d/Ly equal 0.1 and 0.3. 1In this region no known wave theory |
fits very well. It could have been expected that a higher order
Stokesian theory would be the answer, but the investigation by Koh
and Le Mehaute (1966) shows that when d/L, decreases the fifth-order
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approximation represents an even worse approximation than the third
order. Similarly, it is found that second-order cnoidal theory is
worse than first-order cnoidal theory for large wave steepness. This
is inherent to the point that both cnoidal and Stokesian power series
expansion in terms of the small parameters h/d and H/L respectively
are nonuniformly converging series since the functions of d/L attached
to each power term blow up when d/L tends toward small values.

It is interesting that Yamaguchi and Tsuchiya (1976) found that
the shoaling coefficient Ziven by Le Méhaute and Webb (1964) (first
definition of Stoke's phase velocity) almost coincides with the
shoaling coefficient obtained from cnoidal theory developed by
Chappelear (1962) (second definition).

Shuto (1974) attempted to make a synthesis of all these theories

in a simple and practical form by empirically matching these solutions.
Subsequently, he proposes the following law for practical purposes:

0 < TR The small-amplitude theory applies
d

L
30 -%—- < ;9 . use Ha/7 - constant
™ d - s <
1/2
L H L 27H
0.0 . . Use Hds/2 ° - 2V/3| = constant
m d - d2

These equations seem to be the most realistic to remember from al
the theoretical approaches. In the range where both cnoidal and third-
order Stokesian theory apply, the values of the shoaling coefficient
are very close to each other as shown in Figure 6 (Flick, 1978).

3or
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20r
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Figure 6. Comparison between Stokesian third order and
cnoidal shoaling coefficient with experiments
(from Flick, 1978),
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Interestingly, the use of the linear wave theory to evaluate the
value of the shoaling coefficient extends much beyond the formal
validity of this infinitesimal wave theory. Similarly, the value of
the shoaling coefficient given by the Stokesian wave theory extends
into the area where the cnoidal theory fits best. This is due to the
fact that, the shoaling coefficient being the ratio of wave height
H/H, only, the increase in free-surface elevation under the crest is
partly balanced by the increase of free-surface elevation under the
wave trough. However, that the linear wave theory applies for the
shoaling coefficient does not mean that all wave characteristics
(wavelength, velocity components, pressure, acceleration) follow the

Y i s : . .

» same principle; after the local wave height is obtained, all other
- ’ wave characteristics are determined by the appropriate theory.
eSS ‘

| N 3.  Comparison Between Theory and Experiment -

s

A relatively large number of experiments have attempted to
verify shoaling laws; all have been conducted in laboratory wave flumes
with waves generated by wave paddle. Most of these experiments suffer
lack of accuracy because they were either done at too small a scale
and were subsequently subjected to significant scale effects such as
large viscous damping experiments (Iversen, 1951), or the wave paddle
generated not only monochromatic waves but harmonic components
(solitons) which introduced significant error and scattering
(Eagleson, 1956; Iwagaki, 1968).

M.?‘i . TR A

There is actually considerable controversy whether waves of
steady-state profile exist, as demonstrated by Dubreuil-Jacotin (1934).
Theorists Benjamin and Feir (1967) and experimentalist Galvin (1970)
postulate that the disintegration of finite amplitude monochromatic
wave occurs in deep water even on horizontal bottom. There are as many
theoreticians who assume that a steady-state profile does exist as there
i are experimentalists who do not notice the ''creations" of solitons.

.
<
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Use of a formulation developed by Mei and Le Mehaute (1966),

Peregrine (1967), and Madsen and Mei (1969) indicates that for a
, sufficiently abrupt change in water depth, both a solitary wave and a
s cnoidal wave disintegrate into multiple crests. These results have
been obtained numerically and verified experimentally. However, over
a relatively gentle beach, the wave period remains constant between
deep water and shallow water and no disintegration takes place. Dis-
integration takes place when the wave arrives on a reef. It seems
natural to assume that the difference between these two observations
is due to the difference in bottom slope. Bewnjamin and Feir (1967)
show that waves are unstable if kd > 1.4; however, experiments by
Flick (1978) indicate that kd can be much larger without evidence of
g wave disintegration or spectral smearing.

It is commonly accepted that a monochromatic wave arriving on a
rapid change of depth (in diffraction zone) gives rise to at least a
: doubling of crests. Such phenomenon is due to the nonlinear con-
1 vective effects, Iwagaki and Sagai (1971) also investigated the
4
3
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deformation of long waves over a gentle slope using the nonlinear long
wave theory and power series expansions. They found the shoaling
coefficient to be a function of beach slope when S > .01. The steeper
the slope the smaller the shoaling coefficient, a fact which can be
attributed to partial reflection. In fact, due to friction effect, the
ratio H/H, for a given value of d/L, decreases instead of increases
(Sawaragi, Iwata, and Masayashi, 1976).

The first reliable experiments were conducted by Brink-Kjaer and
Jonsson (1973) and Flick (1978). Figures 7 and 8 show results for different
values of HO/L . Flick separates the first, second, and third harmonics
from his wave Sata and is subsequently able to give a reliable ex-
perimental shoaling coefficient. Flick compares his results with
Le Mehaute and Webb (1964) (third-order Stokesian) and also with the
cnoidal solution of Svendsen and Brink-Kjaer (1972) in shallow water
(see Fig. 6).

The shoaling coefficient of a hyperbolic wave is also fairly well
verified by Iwagaki (1968) who gives results very close to the two
mentioned above.

Svendsen and Hansen (1977) compared the shoaling of cnoidal wave
with a set of careful experiments and claimed that other experimenters
(Wiegel, 1950, Iversen, 1951; Eagleson, 1956) carried out their ex-
periments on too steep a slope for the shoaling theory to be valid.
Furthermore, they calculate the damping due to viscous friction,
obviously important on a gentle slope. Svendsen and Hansen concluded
that if the wave height at depth d/Ly = 0.10 is matched between cnoidal
and linear, rather than the energy flux, the cnoidal theory predicts
the shoaling quite well, even close to breaking with small deepwater
wave steepness Ho/L, < 3 to 4 percent but not beyond. Consistently,
with all theories, the wave just before breaking suddenly peaks up very
rapidly (Le Mehaute, 1971). In this range of values, all shoaling
theories (third Stokes, cnoidal and hyperbolic) tend to slightly under-
estimate the value of the shoaling coefficient. Subsequently, the cal-
culated breaking wave height tends to be underestimated. The linear
wave theory underestimates the breaking wave height most significantly,
sometimes by a factor of almost 2 (Fig. 9).

It is pertinent to remember that (a) the shoaling coefficient
given by the linear theory is valid beyond the limit generally con-
sidered as valid for a linear theory, and (b) the shoaling coefficient
given by third-order Stokesian wave is fairly well verified ex-
perimentally and actually very - ‘ose to the value given for the cnoidal
wave, even though, as in the c~.,e of the linear wave, free-surface
profile, pressure, velocity, and acceleration could be significantly
different.

In general, the linear theory can be applied throughout from deep
water to shallow water and then the linear breaking wave height is multi-
plied by a coefficient function of the beach slope (Koh and Le Mehaute,
1966). After the wave height, H, is determined as a function of the
deepwater wave height, H,, and wave period, T (or deepwater wavelength
Lo), all other shallow-water characteristics (free-surface profile,
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particle velocity, acceleration, and pressure) follow by application
of one of the classical wave theories within the accuracy which is
determined for the chosen theory.

BREAKING INDEX

CURV
LINEAR
e
Hp linear Hp experlmentol

SWL

Figure 9. The linear theory underestimates the breaking wave height.

4, Nonlinear Wave Refraction.

It has been shown previously how to determine the shoaling co-
efficient, Kg = H/Hy, when the wave arrives perpendicular to the
bottom contour. This discussion deals with the refraction coefficient,
Kr. Refraction occurs when a wave arrives at an angle o with bottom
contours; then H/Hj = Kg Kr. For a straight parallel contour Snell's
law becomes

SIn o - constant (6)
which applies whether the wavelength, L, is expressed by a linear theory

or not.
1/2 1/2
cCOs
<0 G

Then

7<

4



which also applies for nonlinear as well as for linear theory. The
subscript o refers to deepwater wave characteristics.

In many cases, the refraction method provides a reasonably
accurate measure of the changes waves undergo on approaching a coast.
However, if the angle of a wave ray with the bottom contour is large
(i.e., larger than 700), minor error in the value of the incident
angle leads to a large error in direction angle a in shallow water.
Also, accuracy as far as height changes are concerned cannot be ex-
pected where bottom slopes are steeper than 1/10. No strict limit
has been set, but the accuracy of wave heights derived from orthogonals
that bend sharply is questionable. In short, refraction coefficients
which are quite different from unity, such as K, < 0.5 and K, > 1.5,
must be doubted (Whalin, 1971).

L — —g—

"

~, Nonlinear effects, having an effect on wavelength, phase and

3 group velocity and energy flux, subsequently have an effect on wave .
refraction. This problem has been examined by Chu (1575) who used a

mix Of three theories, i.e., the first-order cnoidal theory of Korteweg

and DeVries (1895), the second-order hyperbolic wave of Iwagaki (1968},

and the Stokes third-order wave as given by Le Mehaute and Webb (1964),

which led to some inconsistencies in approximations. Skovgaard and

. | Petersen (1977) used instead the first-order cnoidal theory of Svendsen

~ (1974) and the stream function wave theories of Dean (1970).

e U —

7 Theoretically, it is possible to express phase velocities as a ;
k| function of the relative wave heights from nonlinear wave theories.

For example, the deepwater wavelength at a third order Stokesian
approximation and the breaking wavelength by a cnoidal or hyperbolic

N wave theory can be conveniently expressed. However, it is interesting

E that due to deformation of wave profile on a sloped bottom, the simple
linear theory has been verified (experimentally) quite well (Ippen,
1966) . Wavelengths given by linear and cnoidal theories are compared

A in Figure 10. Although the cnoidal theory predicts wave height well up
A to breaking, it overpredicts wavelengths significantly. Cnoidal theory,
in fact, predicts an increase in wavelength for a decrease in depth

. when the relative height, H/d, is sufficiently large. This increase

is not reflected by known data (Ippen, 1966) which are fitted quite

well by linear theory (Fig. 11).

E II1I. BREAKING WAVE CHARACTERISTICS ON A SLOPLD
PLANE BEACH '

1. Review of Previous Work,

The determination of lcngshore currents and sediment transport
depends crucially on the characteristics of the breaking wave field.
The wave energy transport, or energy flux, is of particular importance
such that accurate determination of wave height, wavelength, depth at
breaking, and breaking wave angle becomes essential.

This section deals with the practical aspects of determining |
the breaking wave characteristics when certain deepwater character- g
istics are given. The objective is to derive and present results

: 22
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1966; used with the permission of McGraw-
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consistent with presen. xnowledge and in a readily usable form.

e gy

The general problem would require the determination of the
shoaling and refraction of a multidirectional wave spectrum from deep
water over a randomly varying bottom topography until breaking cccurs.
Although such an analysis is possible, it is much too complicated and
would have to be dealt with on a case by case basis using either
manual or computer methods.

A significant and useful simplification is achieved by assuming
the bottom to be a uniformly sloped plane. This allows bottom vari-
ations to be described by a single parameter, i.e., the bottom slope
S. The refraction process is then described globally by Snell's law.
Tais discussion deals only with monochromatic waves under the usual
assumption that the wave period remains constant, and that friction

and reflection are ignored.

To obtain accurate predictions it is necessary to have a wave theory
which is applicable up to the point of breaking. A lack of knowledge
of the actual breaking process requires the use of an empirical
breaking criterion to determine the point of breaking. A study by
Le Mehaute and Koh (1967) evaluated the Stokes first-, third-, and
fifth-order theories and compared the Miche (1944) breaking criterion
with an empirically derived equation. One of these equations was
derived by fitting a number of experimental data points covering the
range 0.02 < § < 0.2 and 0.002 < Hy/Lg < 0.09. This .equation ex-
plicitly accounts for beach slope and is

" -1/4
f2= 0.76 smcf’) (8)
1 T
[o] 0

Since equation (8) is based on observed data it takes into account
nonlinear effects such as wave height peak-up just before breaking.
In applying this equation to waves arriving at an angle to the shore,
Te Mechaute and Koh (1967) corrected the bottom slope for the angle of
incidence; however, they neglected to replace the deepwater wave
height with its unrefracted value.

Subsequently, a new and easier approach to compute cnoidal
waves was presented by Svendsen (1974), Brink-Kjaer and Jonsson
(1973) showed that near breaking the water depth is usually so shallow
that cnoidal theory applies. Indeed, it has been found that wave
height is described well by cnoidal theory in the area close to and

before breaking.

In a recent report, Ostenderf and Madsen (1979) propose to use
cnoidal and linear Stokes wave theories in their respective areas of
applicability. A transition between the two theories which assumes
continuous variation of energy flux and phase velocities is also
presented. Ostendorf and Madsen further suggest the use of an em-
pirical breaking criterion which is sensitive to bottom slope and

depth-varying wave parameters, i.e.,

24




0.14 tanh {(0.8 + 5S) 2ﬂdb/Lb} S <0.1

(9)

0.14 tanh {(0.13) 2wdb/Lb} S >0.1

&l |

To obtain the breaking wave characteristics, the two offshore
parameters (sin a/C*, C4) must be known where

o = angle of incidence

C = wave phase speed C* = C/(gT)
g = gravity acceleration

T = wave period

c, =T /g {(]‘:-)2 n sin )} ~1/4

4

d = stillwater depth
1 2kd

no=y (Y SR

k = 2n/)

L = wavelength

In the deepwater limit this implies that wave height, H,, angle
of incidence, ag, and wave period must be known independently. The
solution requires an itcration process and nomographs are presented
to facilitate the operations.

The method for determining breaking wave characteristics sug-
gested by Ostendorf and Madsen (1979) has been compared with experi-
mental data (Kamphuis, 1953), and it was found that the predicted
breaking wave angle is two large, especially for smaller wave steep-
nesses (see Table 1). 1This iy cusily explained when considering the
plot of wavelength transformation shown in Figure 10. Although
cnoidal theory predicts wave height well up to breaking, it overpre-
dicts wavelengths significantly. Cnoidal theory, in fact, predicts
an increace in wavelength and therefove, also in wave angle when H/d
is sufficiently large. This increase is, as previously mentioned,
not reflected by known data (Ippen, 1966; Fig. 11), which are fitted
quite well by linear theory. As another consequence, the wave break-
ing criterion, again, a result whick is difficult to defend.

Dean (1974) determined wave breaking angles using his stream
function theory, but with a slope-independent semiempirical breaking
criterion. A comparison of his results with the experimental ob-
servations of Kamphuis (1963) is a‘:o nresented in Table 1. The
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predictions are consistently too high, especially for smaller wave
steepness, where predicted and observed a} differ by a factor of
approximately 2.

Table 1. Cemparison of measured and predicted
breaking wave angles.!

Ho
2 0.0175 0.04 0.053 0.062
[s]
o 20° [40° |60° [20° |40° {20° {40° [20° [a0°
o | Kamphuis | 50 |90 120 8% [16° {10° [20° 11° [22°
(1963)
a, | Ostendorf 10° [18.6° [24.3°[12.8°]24.3°|13.9° {26.5° }14.5° |28.8°
and Madsen
(1979)
o, | Dean 9.5% [19°  122° [13° [25° (14° [27° p4.5C 28°
(1974)
IBeach slope, S = .1
2. Solution Approach.

To obtain reliable prediction of breaking wave characteristics,
this study proposes to use cnoidal theory to describe the transformation
of wave height while wavelength will be transformed using either linear
wave theory or third-order Stokes theory. The cnoidal wave